
Message-passing concurrency in Erlang

Lecture 7 of TDA384/DIT391
Principles of Concurrent Programming

Nir Piterman

Chalmers University of Technology | University of Gothenburg
SP1 2020/2021

Based on course slides by Carlo A. Furia and Sandro Stucki



Today’s menu

Actors and message passing

Sending and receiving messages

Stateful processes

Clients and servers

Generic servers

Location transparency & distribution

1 / 43



What is Erlang?

Erlang combines a functional language with message-passing
features:

• The functional part is sequential, and is used to define the
behavior of processes.

• The message-passing part is highly concurrent: it implements
the actor model, where actors are Erlang processes.

This class covers the message-passing/concurrent part of Erlang.

2 / 43



Actors and message passing



Erlang’s principles

Concurrency is fundamental in Erlang, and it follows models that are
quite different from those offered by most imperative languages. In
Erlang (from Armstrong’s PhD thesis):

• Processes are strongly isolated

• Process creation and destruction is a lightweight operation

• Message passing is the only way for processes to interact

• Processes have unique names

• If you know the name of a process you can send it a message

• Processes share no resources

• Error handling is non-local

• Processes do what they are supposed to do or fail

Compare these principles to programming using Java threads!

3 / 43



Shared memory vs. message passing

Shared memory:

• synchronize by writing to
and reading from shared
memory

• natural choice in shared
memory systems such as
threads

shared memory

Thread T1 · · · Thread Tn

Message passing:

• synchronize by
exchanging messages

• natural choice in
distributed memory
systems such as
processes

memory

· · ·

Process P1

memory

Process Pn

message

4 / 43



The actor model

Erlang’s message-passing concurrency mechanisms implement the
actor model:

• Actors are abstractions of processes

• No shared state between actors

• Actors communicate by exchanging messages – asynchronous
message passing

A metaphorical actor is an “active agent which plays a role on cue
according to a script” (Garner & Lukose, 1989).

5 / 43



Actors and messages

Each actor is identified by an address.

An actor can:

• send (finitely many) messages to other actors via their addresses

• change its behavior – what it computes, how it reacts to
messages

• create (finitely many) new actors

A message includes:

• a recipient – identified by its address

• content – arbitrary information

6 / 43



The actor model in Erlang

The entities in the actor model correspond to features of Erlang –
possibly with some terminological change.

ACTOR MODEL ERLANG LANGUAGE

actor sequential process
address PID (process identifier) pid type
message any Erlang term {From, Content}

behavior (defined by) functions
create actor spawning spawn

dispose actor termination
send message send expression To ! Message

receive message receive expression receive...end

7 / 43



Sending and receiving
messages



A process’s life

A process:

• is created by calling spawn

• is identified by a pid (process identifier)

• executes a function (passed as argument to spawn)

• when the function terminates, the process ends

Function spawn(M, F, Args) creates a new process:

• the process runs function F in module M with arguments Args

• evaluating spawn returns the pid of the created process

Within a process’s code, function self() returns the process’s pid.
Within a module’s code, macro ?MODULE gives the module’s name.

Calling spawn(fun () -> f(a1, ..., an) end) is equivalent to
spawn(?MODULE, f, [a1, ..., an]) but does not require exporting f.

8 / 43



Processes: examples

A process’s code:
-module(procs).

print_sum(X,Y) ->

io:format("~p~n", [X+Y]).

compute_sum(X,Y) -> X + Y.

Creating processes in the shell:

1> spawn(procs, print_sum, [3, 4]).

7 % printed sum

<0.78.0> % pid of spawned process

2> spawn(procs, compute_sum, [1, 7]).

<0.80.0> % pid of spawned process

% result not visible!

3> spawn(fun ()-> true end).

<0.82.0> % pid of spawned process

4> self().

<0.47.0> % pid of process running shell

9 / 43



Sending messages

A message is any term in Erlang. Typically, a message is the result of
evaluating an expression.

The expression
Pid ! Message

sends the evaluation T of Message to the process with pid Pid; and
returns T as result.

bang operator

Bang is right-associative. Thus, to send a message to multiple
recipients, we can combine multiple bangs:

Pid1 ! Pid2 ! · · · ! Pidn ! Message

10 / 43



Sending messages

A message is any term in Erlang. Typically, a message is the result of
evaluating an expression.

The expression
Pid ! Message

sends the evaluation T of Message to the process with pid Pid; and
returns T as result.

bang operator

Bang is right-associative. Thus, to send a message to multiple
recipients, we can combine multiple bangs:

Pid1 ! Pid2 ! · · · ! Pidn ! Message

10 / 43



Mailboxes

Every process is equipped with a mailbox, which behaves like a FIFO
queue and is filled with the messages sent to the process in the order
they arrive.

Mailboxes make message-passing asynchronous: the sender does
not wait for the recipient to receive the message; messages queue in
the mailbox until they are processed

To check the content of process Pid’s mailbox, use functions:

• process_info(Pid, message_queue_len): how many elements are
in the mailbox

• process_info(Pid, messages): list of messages in the mailbox
(oldest to newest)

• flush(): empty the current process’s mailbox
1> self() ! self() ! hello. % send ‘hello’ twice to self

2> self() ! world. % send ‘world’ to self

3> erlang:process_info(self(), messages)

{messages, [hello, hello, world]} % queue in mailbox
11 / 43



Receiving messages

To receive messages use the receive expression:

receive

P1 when C1 -> E1;
...

Pn when Cn -> En

end

Evaluating the receive expression selects the oldest term T in the
receiving process’s mailbox that matches a pattern Pk and satisfies
condition Ck. If a term T that matches exists, the receive expression
evaluates to Ek〈Pk , T〉; otherwise, evaluation blocks until a suitable
message arrives.

12 / 43



The receiving algorithm

How evaluating receive works, in pseudo-code:

Term receive(Queue<Term> mailbox, List<Clause> receive) {

while (true) {

await(!mailbox.isEmpty()); // block if no messages

for (Term message: mailbox) // oldest to newest

for (Clause clause: receive) // in textual order

if (message.matches(clause.pattern))

// apply bindings of pattern match

// to evaluate clause expression

return clause.expression〈clause.pattern, message〉;
}

}

13 / 43



Receiving messages: examples

A simple echo function, which prints any message it receives:

echo() ->

receive Msg -> io:format("Received: ~p~n", [Msg]) end.

Sending messages to echo in the shell:

1> Echo=spawn(echo, echo, []).

% now Echo is bound to echo’s pid

2> Echo ! hello. % send ‘hello’ to Echo

Received: hello % printed by Echo

To make a receiving process permanent, it calls itself after receiving:

repeat_echo() ->

receive Msg -> io:format("Received: ~p~n", [Msg]) end,

repeat_echo(). % after receiving, go back to listening

tail recursive, thus no memory consumption problem!
14 / 43



Message delivery order

Erlang’s runtime only provides weak guarantees of message delivery
order:

• if a process S sends some messages to another process R, then
R will receive the messages in the same order S sent them

• if a process S sends some messages to two (or more) other
processes R and Q, there is no guarantee about the order in
which the messages sent by S are received by R relative to
when they are received by Q

In practice, pretty much all the Erlang code we will write
does not rely on any assumptions about message delivery order.

Even defining – let alone enforcing – an absolute time across multiple
independent processes (which could even be geographically
distributed) would be tricky: in order to synchronize, processes can
only exchange messages!

15 / 43



Message delivery order: single process

If process S sends messages a, b, c – in this order – to process R,
then R will receive them in its mailbox in the same order.

sender process S:
R ! a,

R ! b,

R ! c.

receiver process R:
R’s mailbox:

R is process R’s PID

16 / 43



Message delivery order: single process

If process S sends messages a, b, c – in this order – to process R,
then R will receive them in its mailbox in the same order.

sender process S:
R ! a,

R ! b,

R ! c.

receiver process R:
R’s mailbox: a

R is process R’s PID

16 / 43



Message delivery order: single process

If process S sends messages a, b, c – in this order – to process R,
then R will receive them in its mailbox in the same order.

sender process S:
R ! a,

R ! b,

R ! c.

receiver process R:
R’s mailbox: a b

R is process R’s PID

16 / 43



Message delivery order: single process

If process S sends messages a, b, c – in this order – to process R,
then R will receive them in its mailbox in the same order.

sender process S:
R ! a,

R ! b,

R ! c.

receiver process R:
R’s mailbox: a b c

R is process R’s PID

16 / 43



Message delivery order: multiple processes

If process S sends messages a, b, c – in this order – to process R
and to process Q, R and Q may receive them in any order in their
mailboxes relative to each other.

Some possible scenarios:

sender process S:
R ! a,

Q ! b,

Q ! c.

receiver process R:
R’s mailbox:

a

receiver process Q:
Q’s mailbox:

b

Q is process Q’s PID

17 / 43



Message delivery order: multiple processes

If process S sends messages a, b, c – in this order – to process R
and to process Q, R and Q may receive them in any order in their
mailboxes relative to each other.

Some possible scenarios:

sender process S:
R ! a,

Q ! b,

Q ! c.

receiver process R:
R’s mailbox: a

receiver process Q:
Q’s mailbox:

b

Q is process Q’s PID

17 / 43



Message delivery order: multiple processes

If process S sends messages a, b, c – in this order – to process R
and to process Q, R and Q may receive them in any order in their
mailboxes relative to each other.

Some possible scenarios:

sender process S:
R ! a,

Q ! b,

Q ! c.

receiver process R:
R’s mailbox: a

receiver process Q:
Q’s mailbox: b

Q is process Q’s PID

17 / 43



Message delivery order: multiple processes

If process S sends messages a, b, c – in this order – to process R
and to process Q, R and Q may receive them in any order in their
mailboxes relative to each other.

Some possible scenarios:

sender process S:
R ! a,

Q ! b,

Q ! c.

receiver process R:
R’s mailbox: a

receiver process Q:
Q’s mailbox:

b

b c
Q is process Q’s PID

17 / 43



Message delivery order: multiple processes

If process S sends messages a, b, c – in this order – to process R
and to process Q, R and Q may receive them in any order in their
mailboxes relative to each other.

Some possible scenarios:

sender process S:
R ! a,

Q ! b,

Q ! c.

receiver process R:
R’s mailbox:

a

receiver process Q:
Q’s mailbox:

b

Q is process Q’s PID

17 / 43



Message delivery order: multiple processes

If process S sends messages a, b, c – in this order – to process R
and to process Q, R and Q may receive them in any order in their
mailboxes relative to each other.

Some possible scenarios:

sender process S:
R ! a,

Q ! b,

Q ! c.

receiver process R:
R’s mailbox:

a

receiver process Q:
Q’s mailbox: b

Q is process Q’s PID

17 / 43



Message delivery order: multiple processes

If process S sends messages a, b, c – in this order – to process R
and to process Q, R and Q may receive them in any order in their
mailboxes relative to each other.

Some possible scenarios:

sender process S:
R ! a,

Q ! b,

Q ! c.

receiver process R:
R’s mailbox:

a

receiver process Q:
Q’s mailbox:

b

b c
Q is process Q’s PID

17 / 43



Message delivery order: multiple processes

If process S sends messages a, b, c – in this order – to process R
and to process Q, R and Q may receive them in any order in their
mailboxes relative to each other.

Some possible scenarios:

sender process S:
R ! a,

Q ! b,

Q ! c.

receiver process R:
R’s mailbox: a

receiver process Q:
Q’s mailbox:

b

b c
Q is process Q’s PID

17 / 43



Message delivery order: multiple processes

If process S sends messages a, b, c – in this order – to process R
and to process Q, R and Q may receive them in any order in their
mailboxes relative to each other.

Some possible scenarios:

sender process S:
R ! a,

Q ! b,

Q ! c.

receiver process R:
R’s mailbox:

a

receiver process Q:
Q’s mailbox:

b

Q is process Q’s PID

17 / 43



Message delivery order: multiple processes

If process S sends messages a, b, c – in this order – to process R
and to process Q, R and Q may receive them in any order in their
mailboxes relative to each other.

Some possible scenarios:

sender process S:
R ! a,

Q ! b,

Q ! c.

receiver process R:
R’s mailbox:

a

receiver process Q:
Q’s mailbox: b

Q is process Q’s PID

17 / 43



Message delivery order: multiple processes

If process S sends messages a, b, c – in this order – to process R
and to process Q, R and Q may receive them in any order in their
mailboxes relative to each other.

Some possible scenarios:

sender process S:
R ! a,

Q ! b,

Q ! c.

receiver process R:
R’s mailbox: a

receiver process Q:
Q’s mailbox: b

Q is process Q’s PID

17 / 43



Message delivery order: multiple processes

If process S sends messages a, b, c – in this order – to process R
and to process Q, R and Q may receive them in any order in their
mailboxes relative to each other.

Some possible scenarios:

sender process S:
R ! a,

Q ! b,

Q ! c.

receiver process R:
R’s mailbox: a

receiver process Q:
Q’s mailbox:

b

b c
Q is process Q’s PID

17 / 43



Stateful processes



A ping server

A ping server is constantly listening for requests; to every message
ping, it replies with a message ack sent back to the sender.

In order to identify the sender, it is customary to encode messages as
tuple of the form:

{SenderPid, Message}

ping() -> receive

{From, ping} -> From ! {self(), ack}; % send ack to pinger

_ -> ignore % ignore any other message

end, ping(). % next message

Combining the echo and ping servers:

1> Ping = spawn(echo, ping, []), Echo = spawn(echo, repeat_echo, []).

2> Ping ! {Echo, ping}. % send ping on Echo’s behalf

Received: {<0.64.0>, ack} % ack printed by Echo

3> Ping ! {Echo, other}. % send other message to Ping

% no response
18 / 43



Stateful processes

Processes can only operate on the arguments of the function they
run, and on whatever is sent to them via message passing. Thus, we
store state information using arguments, whose value gets updated
by the recursive calls used to make a process permanently running.

A stateful process can implement the message-passing analogue of
the concurrent counter that used Java threads. The Erlang counter

function recognizes two commands, sent as messages:

• increment: add one to the stored value
• count: send back the currently stored value

base_counter(N) ->

receive {From, Command} -> case Command of

increment -> base_counter(N+1); % increment counter

count -> From ! {self(), N}, % send current value

base_counter(N); % do not change value

U -> io:format("? ~p~n", [U]) % unrecognized command

end end.

19 / 43



Stateful processes

Processes can only operate on the arguments of the function they
run, and on whatever is sent to them via message passing. Thus, we
store state information using arguments, whose value gets updated
by the recursive calls used to make a process permanently running.

A stateful process can implement the message-passing analogue of
the concurrent counter that used Java threads. The Erlang counter

function recognizes two commands, sent as messages:

• increment: add one to the stored value
• count: send back the currently stored value

base_counter(N) ->

receive {From, Command} -> case Command of

increment -> base_counter(N+1); % increment counter

count -> From ! {self(), N}, % send current value

base_counter(N); % do not change value

U -> io:format("? ~p~n", [U]) % unrecognized command

end end.
19 / 43



Concurrent counter: first attempt

base_counter(N) ->

receive {From, Command} -> case Command of

increment -> base_counter(N+1); % increment counter

count -> From ! {self(), N}, % send current value

base_counter(N); % do not change value

U -> io:format("? ~p~n", [U]) % unrecognized command

end end.

increment_twice() ->

Counter = spawn(counter, base_counter, [0]), % counter initially 0

% function sending message ‘increment’ to Counter

FCount = fun () -> Counter ! {self(), increment} end,

spawn(FCount), spawn(FCount), % two processes running FCount

Counter ! {self(), count}, % send message ‘count’

% wait for response from Counter and print it

receive {Counter, N} -> io:format("Counter is: ~p~n", [N]) end.

Evaluated only when spawning a process running FCount

20 / 43



Concurrent counter: first attempt (cont’d)

Running increment_twice does not seem to behave as expected:

1> increment_twice().

Counter is: 0

The problem is that there is no guarantee that the message delivery
order is the same as the sending order: the request for count may be
delivered before the two requests for increment (or even before the
two processes have sent their increment requests).

A temporary workaround is waiting some time before asking for the
count, hoping that the two increment messages have been delivered:

wait_and_hope() ->

Counter = spawn(counter, base_counter, [0]), % counter initially 0

FCount = fun () -> Counter ! {self(), increment} end,

spawn(FCount), spawn(FCount), % two processes running FCount

timer:sleep(100), % wait for ‘increment’ to be delivered

Counter ! {self(), count}, % send message ‘count’

receive {Counter, N} -> io:format("Counter is: ~p~n", [N]) end.
21 / 43



Synchronization in an asynchronous world

Since there is no guarantee that the message delivery order is the
same as the sending order when multiple processes are involved, the
only robust mechanism for synchronization is exchanging messages
following a suitable protocol.

For example, the counter sends notifications of every update to a
monitoring process:

counter(N, Log) -> receive

{_, increment} -> % send notification, update count

Log ! {self(), N+1}, counter(N+1, Log);

{From, count} -> % send count, next message

From ! {self(), N}, counter(N, Log) end.

22 / 43



Concurrent counter – with monitoring process

counter(N, Log) -> receive

{_, increment} -> % send notification, update count

Log ! {self(), N+1}, counter(N+1, Log);

{From, count} -> % send count, next message

From ! {self(), N}, counter(N, Log) end.

% set up counter and incrementers; then start monitor

increment_and_monitor() ->

Counter = spawn(?MODULE, counter, [0, self()]),

FCount = fun () -> Counter ! {self(), increment} end,

spawn(FCount), spawn(FCount),

monitor_counter(Counter). % start monitor

monitor_counter(Counter) -> receive {Counter, N} ->

io:format("Counter is: ~p~n", [N]) end,

monitor_counter(Counter).

what happens to messages not in this format?

23 / 43



Concurrent counter – with monitoring process

counter(N, Log) -> receive

{_, increment} -> % send notification, update count

Log ! {self(), N+1}, counter(N+1, Log);

{From, count} -> % send count, next message

From ! {self(), N}, counter(N, Log) end.

% set up counter and incrementers; then start monitor

increment_and_monitor() ->

Counter = spawn(?MODULE, counter, [0, self()]),

FCount = fun () -> Counter ! {self(), increment} end,

spawn(FCount), spawn(FCount),

monitor_counter(Counter). % start monitor

monitor_counter(Counter) -> receive {Counter, N} ->

io:format("Counter is: ~p~n", [N]) end,

monitor_counter(Counter).

what happens to messages not in this format? they stay in the mailbox

23 / 43



Clients and servers



Client/server communication

The client/server architecture is a widely used communication model
between processes using message passing:

1. a server is available to serve requests from any clients

2. an arbitrary number of clients send commands to the server and
wait for the server’s response

Server

Client C1

· · ·
Client Cn

request request

response response

Many Internet services (the web, email, . . . ) use the client/server
architecture.

24 / 43



Servers

A server is a process that:

• responds to a fixed number of commands – its interface
• runs indefinitely, serving an arbitrary number of requests, until it

receives a shutdown command
• can serve an arbitrary number of clients – which issue

commands as messages

Each command is a message of the form:

{Command, From, Ref, Arg1, ..., Argn}

• Command is the command’s name
• From is the pid of the client issuing the command
• Ref is a unique identifier of the request (so that clients can match

responses to requests)
• Arg1, ..., Argn are any arguments to the command

Each commands is encapsulated in a function, so that clients need
not know the structure of messages to issue commands.

25 / 43



Servers

A server is a process that:

• responds to a fixed number of commands – its interface
• runs indefinitely, serving an arbitrary number of requests, until it

receives a shutdown command
• can serve an arbitrary number of clients – which issue

commands as messages

Each command is a message of the form:

{Command, From, Ref, Arg1, ..., Argn}

• Command is the command’s name
• From is the pid of the client issuing the command
• Ref is a unique identifier of the request (so that clients can match

responses to requests)
• Arg1, ..., Argn are any arguments to the command

Each commands is encapsulated in a function, so that clients need
not know the structure of messages to issue commands.

25 / 43



A math server

The interface of a math server consists of the following commands:

factorial(M): compute the factorial of M

status(): return the number of requests served so far (without
incrementing it)

stop(): shutdown the server

We build an Erlang module with interface:

start(): start a math server, and return the server’s pid

factorial(S, M): compute factorial of M on server with pid S

status(S): return number of requests served by server with pid S

stop(S): shutdown server with pid S

-module(math_server).

-export([start/0,factorial/2,status/1,stop/1]).

26 / 43



Math server: event loop

loop(N) ->

receive

% ‘factorial’ command

{factorial, From, Ref, M} ->

From ! {response, Ref, compute_factorial(M)},

loop(N+1); % increment request number

% ‘status’ command

{status, From, Ref} ->

From ! {response, Ref, N},

loop(N); % don’t increment request number

% ‘stop’ command

{stop, _From, _Ref} ->

ok

end.

ordinary Erlang function computing factorial

This function need not be exported, unless it is spawned by another
function of the module using spawn(?MODULE, loop, [0]).
(In that case, it’s called via its module, so it must be exported.)

27 / 43



Math server: starting and stopping

We start the server by spawning a process running loop(0):

% start a server, return server’s pid

start() ->

spawn(fun () -> loop(0) end).

We shutdown the server by sending a command stop:

% shutdown ‘Server’

stop(Server) ->

Server ! {stop, self(), 0}, % Ref is not needed

ok.

28 / 43



Math server: factorial and status

We compute a factorial by sending a command factorial:

% compute factorial(M) on ‘Server’

factorial(Server, M) ->

Ref = make_ref(), % unique reference number

% send request to server

Server ! {factorial, self(), Ref, M},

% wait for response, and return it

receive {response, Ref, Result} -> Result end.

returns number that is unique
among all connected nodes in the system

pid of process
calling factorial

We get the server’s status by sending a command status:

% return number of requests served so far by ‘Server’

status(Server) ->

Ref = make_ref(), % unique reference number

% send request to server

Server ! {status, self(), Ref},

% wait for response, and return it

receive {response, Ref, Result} -> Result end.

29 / 43



Math server: factorial and status

We compute a factorial by sending a command factorial:

% compute factorial(M) on ‘Server’

factorial(Server, M) ->

Ref = make_ref(), % unique reference number

% send request to server

Server ! {factorial, self(), Ref, M},

% wait for response, and return it

receive {response, Ref, Result} -> Result end.

returns number that is unique
among all connected nodes in the system

pid of process
calling factorial

We get the server’s status by sending a command status:

% return number of requests served so far by ‘Server’

status(Server) ->

Ref = make_ref(), % unique reference number

% send request to server

Server ! {status, self(), Ref},

% wait for response, and return it

receive {response, Ref, Result} -> Result end.

29 / 43



Math server: factorial and status

We compute a factorial by sending a command factorial:

% compute factorial(M) on ‘Server’

factorial(Server, M) ->

Ref = make_ref(), % unique reference number

% send request to server

Server ! {factorial, self(), Ref, M},

% wait for response, and return it

receive {response, Ref, Result} -> Result end.

returns number that is unique
among all connected nodes in the system

pid of process
calling factorial

We get the server’s status by sending a command status:

% return number of requests served so far by ‘Server’

status(Server) ->

Ref = make_ref(), % unique reference number

% send request to server

Server ! {status, self(), Ref},

% wait for response, and return it

receive {response, Ref, Result} -> Result end.

29 / 43



Math server: factorial and status

We compute a factorial by sending a command factorial:

% compute factorial(M) on ‘Server’

factorial(Server, M) ->

Ref = make_ref(), % unique reference number

% send request to server

Server ! {factorial, self(), Ref, M},

% wait for response, and return it

receive {response, Ref, Result} -> Result end.

returns number that is unique
among all connected nodes in the system

pid of process
calling factorial

We get the server’s status by sending a command status:

% return number of requests served so far by ‘Server’

status(Server) ->

Ref = make_ref(), % unique reference number

% send request to server

Server ! {status, self(), Ref},

% wait for response, and return it

receive {response, Ref, Result} -> Result end.
29 / 43



Math server: clients

After creating a server instance, clients simply interact with the server
by calling functions of module math_server:

1> Server = math_server:start().

<0.27.0>

2> math_server:factorial(Server, 12).

479001600

3> math_server:factorial(Server, 4).

24

4> math_server:status(Server).

2

5> math_server:status(Server).

2

5> math_server:stop(Server).

ok

6> math_server:status(Server).

% blocks waiting for response

30 / 43



Generic servers



Generic servers

A generic server takes care of the communication patterns behind
every server. Users instantiate a generic server by providing a
suitable handling function, which implements a specific server
functionality.

A generic server’s start and stop functions are almost identical to the
math server’s – the only difference is that the event loop also includes
a handling function:

start(InitialState, Handler) ->

spawn(fun () -> loop(InitialState, Handler) end).

stop(Server) ->

Server ! {stop, self(), 0}, % Ref is not needed

ok.

31 / 43



Generic servers

A generic server takes care of the communication patterns behind
every server. Users instantiate a generic server by providing a
suitable handling function, which implements a specific server
functionality.

A generic server’s start and stop functions are almost identical to the
math server’s – the only difference is that the event loop also includes
a handling function:

start(InitialState, Handler) ->

spawn(fun () -> loop(InitialState, Handler) end).

stop(Server) ->

Server ! {stop, self(), 0}, % Ref is not needed

ok.

31 / 43



Generic server: event loop

A generic server’s event loop includes the current state and the
handling function as arguments:

loop(State, Handler) ->

receive

% a request from ‘From’ with data ‘Request’

{request, From, Ref, Request} ->

% run handler on request

case Handler(State, Request) of

% get handler’s output

{reply, NewState, Result} ->

% the requester gets the result

From ! {response, Ref, Result},

% the server continues with the new state

loop(NewState, Handler)

end;

{stop, _From, _Ref} -> ok

end.
32 / 43



Generic server: issuing a request

A generic server’s function request takes care of sending generic
requests to the server, and of receiving back the results.

% issue a request to ‘Server’; return answer

request(Server, Request) ->

Ref = make_ref(), % unique reference number

% send request to server

Server ! {request, self(), Ref, Request},

% wait for response, and return it

receive {response, Ref, Result} -> Result end.

33 / 43



Math server: using the generic server

Here is how we can define the math server using the generic server.

Starting and stopping use the handling function math_handler:

start() -> gserver:start(0, fun math_handler/2).

stop(Server) -> gserver:stop(Server).

The handling function has two cases, one per request kind:

math_handler(N, {factorial, M}) -> {reply, N+1, compute_factorial(M)};

math_handler(N, status) -> {reply, N, N}.

The exported functions factorial and status – which are called by
clients – call the generic server’s request function.

factorial(Server, M) -> gserver:request(Server, {factorial, M}).

status(Server) -> gserver:request(Server, status).

34 / 43



Servers: improving robustness and flexibility

We extend the implementation of the generic server to improve:

robustness: add support for error handling and crashes

flexibility: add support for updating the server’s functionality while
the server is running

performance: discard spurious messages sent to the server, getting
rid of “junk” in the mailbox

All these extensions to the generic server do not change its interface;
thus instance servers relying on it will still work, with the added
benefits provided by the new functionality!

35 / 43



Robust servers

If computing the handling function on the input fails, we catch the
resulting exception and notify the client that an error has occurred.

To handle any possible exception, use the catch(E) built-in function:

• if evaluating E succeeds, the result is propagated;
• if evaluating E fails, the resulting exception Reason is propagated

as {'EXIT', Reason}

This is how we perform exception handling in the event loop:
case catch(Handler(State, Request)) of

% in case of error

{’EXIT’, Reason} ->

% the requester gets the exception

From ! {error, Ref, Reason},

% the server continues in the same state

loop(State, Handler);

% otherwise (no error): get handler’s output

{reply, NewState, Result} ->
36 / 43



Flexible servers

Changing the server’s functionality requires a new kind of request,
which does not change the server’s state but it changes the handling
function.

The event loop now receives also this new request kind:

% a request to swap ‘NewHandler’ for ‘Handler’

{update, From, Ref, NewHandler} ->

From ! {ok, Ref}, % ack

% the server continues with the new handler

loop(State, NewHandler);

Function update takes care of sending requests for changing handling
function (similarly to what request does for basic requests):

% change ‘Server’s handler to ‘NewHandler’

update(Server, NewHandler) ->

Ref = make_ref(), % send update request to server

Server ! {update, self(), Ref, NewHandler},

receive {ok, Ref} -> ok end. % wait for ack 37 / 43



Discarding junk messages

If unrecognized messages are sent to a server, they remain in the
mailbox indefinitely (they never pattern match in receive). If too many
such “junk” messages pile up in the mailbox, they may slow down the
server.

To avoid this, it is sufficient to match any unknown messages and
discard them as last clause in the event loop’s receive:

% discard unrecognized messages

_ -> loop(State, Handler)

To avoid clients waiting forever for responses to discarded requests,
we add a timeout to request:

receive

{response, Ref, Result} -> Result

% after 10 seconds, give up

after 10000 -> timeout end.

38 / 43



Discarding junk messages

If unrecognized messages are sent to a server, they remain in the
mailbox indefinitely (they never pattern match in receive). If too many
such “junk” messages pile up in the mailbox, they may slow down the
server.

To avoid this, it is sufficient to match any unknown messages and
discard them as last clause in the event loop’s receive:

% discard unrecognized messages

_ -> loop(State, Handler)

To avoid clients waiting forever for responses to discarded requests,
we add a timeout to request:

receive

{response, Ref, Result} -> Result

% after 10 seconds, give up

after 10000 -> timeout end.

38 / 43



Location transparency &
distribution



Registered processes

One needs another process’s pid to exchange messages with it. To
increase the flexibility of exchanging pids in open systems, it is
possible to register processes with a symbolic name:

• register(Name, Pid): register the process Pid under Name; from
now on, Name can be used wherever a pid is required

• unregister(Name): unregister the process under Name; when a
registered process terminates, it implicitly unregisters as well

• registered(): list all names of registered processes

• whereis(Name): return pid registered under Name

In the generic server, we can add a registration function with name:

% start a server and register with ‘Name’

start(InitialState, Handler, Name) ->

register(Name, start(InitialState, Handler)).

All other server functions can be used by passing Name for Server.

39 / 43



Registered processes

One needs another process’s pid to exchange messages with it. To
increase the flexibility of exchanging pids in open systems, it is
possible to register processes with a symbolic name:

• register(Name, Pid): register the process Pid under Name; from
now on, Name can be used wherever a pid is required

• unregister(Name): unregister the process under Name; when a
registered process terminates, it implicitly unregisters as well

• registered(): list all names of registered processes

• whereis(Name): return pid registered under Name

In the generic server, we can add a registration function with name:

% start a server and register with ‘Name’

start(InitialState, Handler, Name) ->

register(Name, start(InitialState, Handler)).

All other server functions can be used by passing Name for Server.
39 / 43



From concurrent to distributed

Message passing concurrency works in the same way independent of
whether the processes run on the same computer or in a distributed
setting.

In Erlang, we can turn any application into a distributed one by
running processes on different nodes:

• start an Erlang runtime environment on each node

• connect the nodes by issuing a ping

• load the modules to be execute on all nodes in the cluster

• for convenience, register the server processes

• to identify registered process Name running on a node
node@net_address use the tuple {Name, 'node@net_address'}

wherever you would normally use a registered name or pid

40 / 43



Distribution: setting up nodes

In our simple experiments, the nodes are processes on the same
physical local machine (IP address 127.0.0.1, a.k.a. local host), but
the very same commands work on different machines connected by a
network.

Node server@127.0.0.1:
> erl -name ’server@127.0.0.1’

-setcookie math_cluster

s1>

Node client@127.0.0.1:

> erl -name ’client@127.0.0.1’

-setcookie math_cluster

c1>

A cookie is an identifier that all nodes in the same connected group
share.

41 / 43



Distribution: connect nodes and load modules

Nodes are invisible to each other until a message is exchanged
between them; after that, they are connected.

Node client@127.0.0.1:

% send a ping message to connect client to server node

c1> net_adm:ping(’server@127.0.0.1’).

pong % the nodes are now connected

% list connected nodes

c2> nodes().

[’server@127.0.0.1’]

% load module ‘ms’ in all connected nodes

c3> nl(ms).

abcast % the module is now loaded

42 / 43



Distribution: server setup

We start the math server on the node server, and register it under the
name mserver.

Then, we can issue request from the client node using
{mserver, 'server@127.0.0.1'} instead of pids.

Node server@127.0.0.1:
s1> register(mserver,

ms:start()).

true

% server started

% and registered

Node client@127.0.0.1:

c4> ms:factorial(

{mserver, ’server@127.0.0.1’}, 10).

3628800

c5> ms:status(

{mserver, ’server@127.0.0.1’}).

1

c6> ms:status(

{mserver, ’server@127.0.0.1’}).

1

The very same protocol works for an arbitrary number of client nodes.
43 / 43



These slides’ license

© 2016–2019 Carlo A. Furia, Sandro Stucki

Except where otherwise noted, this work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/.

http://creativecommons.org/licenses/by-sa/4.0/

	Actors and message passing
	Sending and receiving messages
	Stateful processes
	Clients and servers
	Generic servers
	Location transparency & distribution

